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Effects of nonlocal feedback on traveling fronts in neural fields subject to transmission delay
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The work introduces a model for reciprocal connections in neural fields by a nonlocal feedback mechanism,
while the neural field exhibits nonlocal interactions and intra-areal transmission delays. We study the speed of
traveling fronts with respect to the transmission delay, the spatial feedback range, and the feedback delay for
general axonal and feedback connectivity kernels. In addition, we find a novel shape of traveling fronts due to
the applied feedback and criteria for its occurrence are derived.
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In recent years, propagating activity in spatially extendeccal field potentials(e.g., [31]). In mathematical terms, the
systems has been found experimentally in neural systemseural field is assumed to be continuous in space and time.
[1-§ and in chemistry and biologhy6—8]. In particular trav-  The dendritic currenV at locationx at timet represents the
eling fronts have attracted much interest in thepfy9-13  linear delayed response of chemical synapses subject to in-
partly due to experimental finding43-15. Several studies coming pulse activity. In turn, this pulse activity originates at
dealing with these phenomena treat the examined system By spatial locationy by conversion from dendritic currents
partial differential equations, which account for short-rangev(y,t-a(x,y)). Here a(x,y) represents the delay time be-
spatial interactions. However, neural systems might exhibitween the origin and termination of the pulse. The present
long-range interactions by their underlying spatial structureyork treats two types of delagFig. 1). One type considers
[16]. This structure originates from dendritic arborizations 0fpu|se activity propagating a|0ng axonal connections in the
neurons and from the spread of axonal connections. Hencfleld and terminating at chemical synapses. This work fo-
realistic models of neural activity have to treat nonlocal in-cyses on intracortical fields, which exhibit the same trans-
teractions by integrating kernels. These kernels reflect thﬁ]ission Speed) for both excitatory and inhibitory connec-
underlying connectivity in neural tissue. However, connectjons. Hence, the transmission delay agx,y)=|x-y|/v.
tivity kernels are known only for few functional areas as thepyrther a nonlocal feedback loop is present witlx,y) =1,
visual cortex(17], the cerebellunjl8], or the prefrontal cor-  \hich terminates at either excitatory or inhibitory chemical
tex [19]. Thus, modeling of traveling phenomena in generalsynapses. We point out that both transmission and feedback
neural systems necessitates the treatment for more genegljays are assumed homogeneous; i.e., the corresponding
kernel types. We mention previous studies of the stability of;onnectivity between two locations depends on their spatial
neural fields for general homogeneous kerig#-22. The  gjistance only.
present work follows this idea in order to gain a classifica- The model assumes a single time scale in the synaptic
tion scheme for traveling fronts. This Brief Report is similar delay, which is set to unity by an appropriate time scaling.
to previous studies considering general kerrdl8,11 or  pence, the dendritic current obeys
general synaptic respong&s], but contrasts to these studies

by considering constant nonlocal feedback delay. The latter
has been found experimentally in reciprocal-connected neu-
ral areag24,25 and plays a decisive role in neural informa-
tion processing26]. We shall show how the front speed
depends on both additional delays and how the typical front
shape changes by the feedback delay.

The conduction-based modg¢R7-29 assumes neural
populations coupled on a microscopic spatial level by chemi-
cal synapses. That is, population ensembles represent a
coarse-grained spatial field. In addition, the neural activity is
expressed by dendritic currents and firing rates averaged over
an ensemble entity. This assumption neglects single-spike
activity and temporal coding of neurons; i.e., the neural fir-
ing times are uncorrelatefB0]. Thus the model considers
time-averaged spiking activity—i.e., coarse-grained temporal
activity. By virtue of its mesoscopic spatial scale, such neural
activity is recorded in neurophysiological experiments as lo-

neural field

feedback loop f(x-y)

FIG. 1. Sketch of intra-areal axonal connections and nonlocal
*Electronic address: hutt@wias-berlin.de feedback connections.
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The functionsa(x,t) and f(x,t) represent the synaptic input T
by axonal and feedback connections, respectively. The cor- |/
responding connectivity function&(x) and F(x) are intro- /
duced as probability density functions of connections—i.e., 0' R T T B TR
IZ AN dx= k<o, [* F(x)dx=u<o. Here, the constants 0 2 yansmission speedv 190

and u represent the synaptic strength of axonal and nonlocal

feedback contributions, respectively. The axonal transmis- FIG. 2. The front speed plotted with respect to the transmission

sion speed and the constant feedback delaintroduce two  speed for various feedback strengths for the kerg®lsThe param-

more time scales to the system, in addition to the synapti€ters are set t@.=2.0, 8=2.0, V(=0.1, 7=0.01, ¢=0.8, andr

delay. The conversion from dendritic currents to pulse rates 2.0

is given by the transfer functio8. It reflects the statistical

properties of firing thresholds and active processes in actiorlere and in the following/£[-] denotes the Laplace trans-

potential generation(28,30,32 and exhibits a sigmoidal form and the upper(lower) sign represents the case

shape. In the following, we assume the same firing thresh=0 (c<0). As shall be seen in the subsequent paragraph,

oldsV, for all neurons function. Thus the transfer function is Eq. (4) defines the resulting front speed for fixed threshold

chosen to the Heaviside step functi®v)=0(V-Vy) and v,

the system becomes binary. A few simple calculations on Eq. In a first analysis step, we neglect the feedb&ck0.

(1) show the existence of two stationary constant stategltilizing the relations(dg/dv) dv=-g’ dc and g’ =dg/dc,

Vima=k+p andVpn=0. we find the relationdc/dv=—(dg/dv)/g’. It turns out that
Now, a transformation to the moving framéx,t)=V(x  gg/a =L£[uA(U)](W)/v2 and g’=—-L[uAu)](w)/c? with w

—ct=V(2) with the front speedc simplifies the analysis. =1/|c|+1/v. This leads todc/dv=c?/v? for all kernelsA.

Boundary conditions V(z—-%)=V,>V,, V(z—®)  Thatis, the front speed monotonically increases with increas-

=Vmin< Vo and V(0) =V, guarantee the traveling front solu- ing transmission speed for all axonal kernels. Additionally,

tions. In addition, the conditionv<c<wv guarantees physi- for v —«, the front speect saturates tac, with Vo—«/2

cally reasonable solutions consistent with previous findings: = £[A](1/|c).

[10,33,34. AssumingV(z) >V,0z<0 andV(z) <V,0z=0, In order to study the cage+ 0 in some detail, the analy-
Eq. (1) yields sis focuses on the family of exponential kernels,
d
-c-V(29+V(2)=h(2), (2 A(z) = a—ee_‘z| - ﬂe—dzl F(2) = ﬁe_‘zv" 5
with

where o gives the spatial feedback rangg,and a, are ex-

o —cr citatory and inhibitory weights, andabbreviates the ratio of
h(z):f A(z—z’)dz’+f F(z-2)dZ (3 excitatory and inhibitory spatial rangesf. [34]). For in-

'°° e stance, in the case @f,=g, r<1 andr>1 correspond to
and §=c/(c-v)0dz=0, s=c/(c+v)0z<0. local excitation-lateral inhibition and local inhibition-lateral

Now, we examine the dependence of the front speed €Xxcitation, respectively. With these definitions &4) is re-

from various parameters. In the casecof0, solving Eq(2)  cast into
by partial integration yields divergent solutions o .

However, to obtain finite solutions the sum of divergenty= 2 ool & v-ld 27 glelo — vy,
termsg needs to vanish. Following the same path of calcu- 2 v—lc[+vlc| 2v-|c[+rv[c] 20+]c]
lations in the case of <0, we find divergent solutions for (6)

z— -, Thus nondivergent solutiondz) stipulateg=0 with 0, q

B -~ We find dc/dv=c*/(v=+bw) with b=b(|c|,v,0,7,a.,&).

9= w2+ LIF(u+]c[n](0) - Vo + LIAW] Figure 2 shows the relation af and v for excitatory and

1 inhibitory feedback, which is similar to results in previous

=] (4)  studies for vanishing feedback loopsf. [10,23). Further,
the figure indicates a monotonic increaskecreasgof the

which defines the threshol®y subject to the parameters. front speed by increased excitatdighibitory) feedback. In

x(ﬁ = l) FeL[F(u+ |c|r)](

v c]
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order to examine this relation in some more detail, we focus g 5. The traveling front for excitatory, vanishing, and inhibi-

on dC/dM:_‘(ﬁg/ﬁﬂ)/g'- First let us take a look at the sign (ory nonlinear feedback for the kernel). Parameters ara,=2.0,
of g’. We find, fora;=0 andv>|c], 2,=1.0,r=2.0,V(=0.1,7=0.1,0=0.1,0=10.28, anct~3.9 for all

. applied values oju.
o= B 1+ |C| <T+ g )e—c|7'/(r
¢ o+ |C| o+ |C|

for g’=0. It turns out that excitatory fields wite.> 0 yield
ue=>0 and Eq.(6) givesdg/du=0 for u=0. In addition, it ,
is g’ <0 for u> u, which leads todc/du>0 for u> u.. _ _ (z-u)lc
That is, increasing excitatory feedback in excitatory fields * 0 (1= AL =du) + F(u+cr]e du
increases the front speed. In the case ef P<pug, it is

o4 -cT
V(z):f A(z—u)du+J F(z-u)du

—00

g’>0 anddc/du<0; i.e., increasing excitatory feedback T e ﬁ[A(u)](i — }) +eTE[F(u+|C|T)]<i)
may also reveal decreasing front speeds. Figure 3 summa- Ic v Ic|/ |
rizes the results and confirms Fig. 2. Inhibitory fields with 7

a.< 0 yield u.<0 and the resulting relations can be derived
in a similar way by Fig. 3. With these results, it is straight- Typical traveling fronts exhibit a single inflection point and
forward to find the relation of the front speed to the feedbackapproach horizontal asymptotics fdz] — <. However, a
delay and the feedback range. It dc/dr=pal/g’ and  close look at Eq(2) indicates a sign change d¥/dzdue to
dc/do=-ub/g’ with a(c,o,7)>0 andb(c,o,7)>0. Figure  nonlocal feedback; i.e., local extrema ¥fz) may exist.

4 illustrates these relations for parameters wjtk< 0. Inter-  Considering Eqs(2) and(7) the sufficient condition for local
estingly, it is alsodo/dr=a/b>0 for constantc. That is, extrema reads

increased feedback delay times demand an increased feed-

back range for constant front speeds. The level lines in Fig. 4 L‘[A(u)]( 1_ 1) +e"L[F(u+ |c|7-)]<i|)

confirms this result. I v c
Finally, we focus on the shape of the traveling front and 2
find, for general kernels, = if [(1 - 8A((1 - Su) + F(u+|c|n e du.
0
8
95y : ” That is, the typical shape of the traveling front is changed if

Eq. (8) shows real rootg,. In addition, the type of extrema is
given by the sign of

AV
i

1-6 1
= %A(ze(l -9)+ EF(ze+ crn). (9

Z= Ze

Now recall the implicit conditiondV/dz<0 at z=0. This
condition constrains the set of possible local extrema. For
z.>0, Eq.(8) needs an even number of solutions with both
positive and negative signs éfV/Jz> at z=z,. In contrast,
z.< 0 facilitates an arbitrary number of extrema with at least
FIG. 4. The front speed with respect to the feedback range ON€ maximum. Figure 5 shows the novel shape by plotting
and the feedback delayfor the kernels(5). Other parameters are V(2) from Eq. (7) for appropriate parameters. Here, inhibi-
a,=2.0,=0.0,Vy=0.1, andu=7.81. tory feedback results in a local minimum and maximum,

S T
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while excitatory feedback does show the typical shape with a The previous sections showed the existence of traveling
steeper front. Assessing these analytical solutions numerfronts, while no information is gained about their temporal
cally by inserting them to Eq(2) reveals good accordance stability towards small deviations. This problem has been
(not shown. attacked recently by considering Evans functions of nonlocal
A further sufficient criterion for the occurrence of local neural fields[35,36. Though this stability analysis of the
extrema is the existence of a horizontal inflection point, fromProposed model might yield novel interesting results, it
which both a local minimum and local maximum grow by would exceed the major aim of this Brief Report and we

changing parameters. According to K§), the correspond-
ing condition reads

v vz |\ _
5 +CA(U +c) =-F(z+c7). (10)

It turns out that excitatory fields—i.eA> 0—exhibit local
extrema only in the case of inhibitory feedback withk<0,
while A< 0 faciliates extrema foF >0 only. In other words
no local extrema occur in excitatonhibitory) fields sub-
ject to excitatory(inhibitory) feedback.

refer the reader to future work.

Summarizing, the present Brief Report introduces nonlin-
ear feedback to neural fields and investigates its influence on
the speed of traveling fronts and its shape for general con-
nectivity kernels. The novel front shape emerges due to non-
local feedback of contrary sign of interaction with the field—
i.e., in the case of excitatory feedback in inhibitory fields and
vice versa.

This work was supported by the DFG research center
“Mathematics for key techonologieSFZT 86) in Berlin,
Germany.
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