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The work introduces a model for reciprocal connections in neural fields by a nonlocal feedback mechanism,
while the neural field exhibits nonlocal interactions and intra-areal transmission delays. We study the speed of
traveling fronts with respect to the transmission delay, the spatial feedback range, and the feedback delay for
general axonal and feedback connectivity kernels. In addition, we find a novel shape of traveling fronts due to
the applied feedback and criteria for its occurrence are derived.
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In recent years, propagating activity in spatially extended
systems has been found experimentally in neural systems
[1–5] and in chemistry and biology[6–8]. In particular trav-
eling fronts have attracted much interest in theory[7,9–12]
partly due to experimental findings[13–15]. Several studies
dealing with these phenomena treat the examined system by
partial differential equations, which account for short-range
spatial interactions. However, neural systems might exhibit
long-range interactions by their underlying spatial structure
[16]. This structure originates from dendritic arborizations of
neurons and from the spread of axonal connections. Hence,
realistic models of neural activity have to treat nonlocal in-
teractions by integrating kernels. These kernels reflect the
underlying connectivity in neural tissue. However, connec-
tivity kernels are known only for few functional areas as the
visual cortex[17], the cerebellum[18], or the prefrontal cor-
tex [19]. Thus, modeling of traveling phenomena in general
neural systems necessitates the treatment for more general
kernel types. We mention previous studies of the stability of
neural fields for general homogeneous kernels[20–22]. The
present work follows this idea in order to gain a classifica-
tion scheme for traveling fronts. This Brief Report is similar
to previous studies considering general kernels[10,11] or
general synaptic responses[23], but contrasts to these studies
by considering constant nonlocal feedback delay. The latter
has been found experimentally in reciprocal-connected neu-
ral areas[24,25] and plays a decisive role in neural informa-
tion processing[26]. We shall show how the front speed
depends on both additional delays and how the typical front
shape changes by the feedback delay.

The conduction-based model[27–29] assumes neural
populations coupled on a microscopic spatial level by chemi-
cal synapses. That is, population ensembles represent a
coarse-grained spatial field. In addition, the neural activity is
expressed by dendritic currents and firing rates averaged over
an ensemble entity. This assumption neglects single-spike
activity and temporal coding of neurons; i.e., the neural fir-
ing times are uncorrelated[30]. Thus the model considers
time-averaged spiking activity—i.e., coarse-grained temporal
activity. By virtue of its mesoscopic spatial scale, such neural
activity is recorded in neurophysiological experiments as lo-

cal field potentials(e.g., [31]). In mathematical terms, the
neural field is assumed to be continuous in space and time.
The dendritic currentV at locationx at time t represents the
linear delayed response of chemical synapses subject to in-
coming pulse activity. In turn, this pulse activity originates at
a spatial locationy by conversion from dendritic currents
V(y,t−asx,yd). Here asx,yd represents the delay time be-
tween the origin and termination of the pulse. The present
work treats two types of delay(Fig. 1). One type considers
pulse activity propagating along axonal connections in the
field and terminating at chemical synapses. This work fo-
cuses on intracortical fields, which exhibit the same trans-
mission speedv for both excitatory and inhibitory connec-
tions. Hence, the transmission delay isasx,yd= ux−yu /v.
Further a nonlocal feedback loop is present withasx,yd=t,
which terminates at either excitatory or inhibitory chemical
synapses. We point out that both transmission and feedback
delays are assumed homogeneous; i.e., the corresponding
connectivity between two locations depends on their spatial
distance only.

The model assumes a single time scale in the synaptic
delay, which is set to unity by an appropriate time scaling.
Hence, the dendritic current obeys
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FIG. 1. Sketch of intra-areal axonal connections and nonlocal

feedback connections.
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]

]t
Vsx,td = − Vsx,td + asx,td + fsx,td, s1d

asx,td =E
−`

`

Asx − ydS„Vsy,t − ux − yu/vd…dy,

fsx,td =E
−`

`

Fsx − ydS„Vsy,t − td…dy.

The functionsasx,td and fsx,td represent the synaptic input
by axonal and feedback connections, respectively. The cor-
responding connectivity functionsAsxd and Fsxd are intro-
duced as probability density functions of connections—i.e.,
e−`

` Asxddx=k,`, e−`
` Fsxddx=m,`. Here, the constantsk

andm represent the synaptic strength of axonal and nonlocal
feedback contributions, respectively. The axonal transmis-
sion speedv and the constant feedback delayt introduce two
more time scales to the system, in addition to the synaptic
delay. The conversion from dendritic currents to pulse rates
is given by the transfer functionS. It reflects the statistical
properties of firing thresholds and active processes in action
potential generation[28,30,32] and exhibits a sigmoidal
shape. In the following, we assume the same firing thresh-
oldsV0 for all neurons function. Thus the transfer function is
chosen to the Heaviside step functionSsVd=QsV−V0d and
the system becomes binary. A few simple calculations on Eq.
(1) show the existence of two stationary constant states
Vmax=k+m andVmin=0.

Now, a transformation to the moving frameVsx,td=Vsx
−ctd=Vszd with the front speedc simplifies the analysis.
Boundary conditions Vsz→−`d=Vmax.V0, Vsz→`d
=Vmin,V0 and Vs0d=V0 guarantee the traveling front solu-
tions. In addition, the condition −v,c,v guarantees physi-
cally reasonable solutions consistent with previous findings
[10,33,34]. AssumingVszd.V0∀z,0 andVszdøV0∀zù0,
Eq. (1) yields

− c
]

]z
Vszd + Vszd = hszd, s2d

with

hszd =E
−`

dz

Asz− z8ddz8 +E
−`

−ct

Fsz− z8ddz8 s3d

andd=c/ sc−vd∀zù0, d=c/ sc+vd∀z,0.
Now, we examine the dependence of the front speedc

from various parameters. In the case ofc.0, solving Eq.(2)
by partial integration yields divergent solutions forz→`.
However, to obtain finite solutions the sum of divergent
termsg needs to vanish. Following the same path of calcu-
lations in the case ofc,0, we find divergent solutions for
z→−`. Thus nondivergent solutionsVszd stipulateg=0 with

g = k/2 +LfFsu + ucutdgs0d − V0 7 LfAsudg

3S 1

ucu
7

1

v
D 7 etLfFsu + ucutdgS 1

ucuD , s4d

which defines the thresholdV0 subject to the parameters.

Here and in the following,Lf·g denotes the Laplace trans-
form and the upper(lower) sign represents the casec
ù0 sc,0d. As shall be seen in the subsequent paragraph,
Eq. (4) defines the resulting front speed for fixed threshold
V0.

In a first analysis step, we neglect the feedbackF=0.
Utilizing the relationss]g/]vd dv=−g8 dc and g8=]g/]c,
we find the relationdc/dv=−s]g/]vd /g8. It turns out that
]g/]v=LfuAsudgswd /v2 and g8=−LfuAsudgswd /c2 with w
=1/ucu71/v. This leads todc/dv=c2/v2 for all kernelsA.
That is, the front speed monotonically increases with increas-
ing transmission speed for all axonal kernels. Additionally,
for v→`, the front speedc saturates toc0 with V0−k /2
= 7LfAgs1/uc0ud.

In order to study the caseFÞ0 in some detail, the analy-
sis focuses on the family of exponential kernels,

Aszd =
ae

2
e−uzu −

air

2
e−r uzu, Fszd =

m

2s
e−uzu/s, s5d

wheres gives the spatial feedback range,ae andai are ex-
citatory and inhibitory weights, andr abbreviates the ratio of
excitatory and inhibitory spatial ranges(cf. [34]). For in-
stance, in the case ofae=ai, r ,1 and r .1 correspond to
local excitation-lateral inhibition and local inhibition-lateral
excitation, respectively. With these definitions Eq.(4) is re-
cast into

g =
ae

2

v − ucu
v − ucu + vucu

−
ai

2

v − ucu
v − ucu + rvucu

+
m

2

s

s + ucu
e−ucut/s − V0.

s6d

We find dc/dv=c2/ sv2+bmd with b=bsucu ,v ,s ,t ,ae,aid.
Figure 2 shows the relation ofc and v for excitatory and
inhibitory feedback, which is similar to results in previous
studies for vanishing feedback loops(cf. [10,23]). Further,
the figure indicates a monotonic increase(decrease) of the
front speed by increased excitatory(inhibitory) feedback. In

FIG. 2. The front speed plotted with respect to the transmission
speed for various feedback strengths for the kernels(5). The param-
eters are set toae=2.0, ai =2.0, V0=0.1, t=0.01, s=0.8, andr
=2.0.
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order to examine this relation in some more detail, we focus
on dc/dm=−s]g/]md /g8. First let us take a look at the sign
of g8. We find, forai =0 andv@ ucu,

mc = aeF 1 + ucu
s + ucuSt +

s

s + ucuDe−ucut/sG−1

for g8=0. It turns out that excitatory fields withae.0 yield
mc.0 and Eq.(6) gives]g/]mù0 for mù0. In addition, it
is g8,0 for m.mc which leads todc/dm.0 for m.mc.
That is, increasing excitatory feedback in excitatory fields
increases the front speed. In the case of 0,m,mc, it is
g8.0 and dc/dm,0; i.e., increasing excitatory feedback
may also reveal decreasing front speeds. Figure 3 summa-
rizes the results and confirms Fig. 2. Inhibitory fields with
ae,0 yield mc,0 and the resulting relations can be derived
in a similar way by Fig. 3. With these results, it is straight-
forward to find the relation of the front speed to the feedback
delay and the feedback range. It isdc/dt=ma/g8 and
dc/ds=−mb/g8 with asc,s ,td.0 andbsc,s ,td.0. Figure
4 illustrates these relations for parameters withg8,0. Inter-
estingly, it is alsods /dt=a/b.0 for constantc. That is,
increased feedback delay times demand an increased feed-
back range for constant front speeds. The level lines in Fig. 4
confirms this result.

Finally, we focus on the shape of the traveling front and
find, for general kernels,

Vszd =E
−`

dz

Asz− uddu+E
−`

−ct

Fsz− uddu

+E
0

z

fs1 − ddA„s1 − ddu… + Fsu + ctdgesz−ud/cdu

7 ez/cFLfAsudgS 1

ucu
7

1

v
D + etLfFsu + ucutdgS 1

ucuDG .

s7d

Typical traveling fronts exhibit a single inflection point and
approach horizontal asymptotics foruzu→`. However, a
close look at Eq.(2) indicates a sign change ofdV/dzdue to
nonlocal feedback; i.e., local extrema ofVszd may exist.
Considering Eqs.(2) and(7) the sufficient condition for local
extrema reads

LfAsudgS 1

ucu
7

1

v
D + etLfFsu + ucutdgS 1

ucuD
= ±E

0

ze

fs1 − ddA„s1 − ddu… + Fsu + ucutdge−u/cdu.

s8d

That is, the typical shape of the traveling front is changed if
Eq. (8) shows real rootsze. In addition, the type of extrema is
given by the sign of

U ]2V

]z2 U
z=ze

=
s1 − dd

c
A„zes1 − dd… +

1

c
Fsze + ctd. s9d

Now recall the implicit condition]V/]z,0 at z=0. This
condition constrains the set of possible local extrema. For
ze.0, Eq. (8) needs an even number of solutions with both
positive and negative signs of]2V/]z2 at z=ze. In contrast,
ze,0 facilitates an arbitrary number of extrema with at least
one maximum. Figure 5 shows the novel shape by plotting
Vszd from Eq. (7) for appropriate parameters. Here, inhibi-
tory feedback results in a local minimum and maximum,

FIG. 3. Sketch of the relation betweenm andg8.

FIG. 4. The front speedc with respect to the feedback ranges
and the feedback delayt for the kernels(5). Other parameters are
ae=2.0, ai =0.0, V0=0.1, andm=7.81.

FIG. 5. The traveling front for excitatory, vanishing, and inhibi-
tory nonlinear feedback for the kernels(5). Parameters areae=2.0,
ai =1.0, r =2.0,V0=0.1,t=0.1,s=0.1,v=10.28, andc<3.9 for all
applied values ofm.
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while excitatory feedback does show the typical shape with a
steeper front. Assessing these analytical solutions numeri-
cally by inserting them to Eq.(2) reveals good accordance
(not shown).

A further sufficient criterion for the occurrence of local
extrema is the existence of a horizontal inflection point, from
which both a local minimum and local maximum grow by
changing parameters. According to Eq.(9), the correspond-
ing condition reads

v
v + c

AS vz

v + c
D = − Fsz+ ctd. s10d

It turns out that excitatory fields—i.e.,A.0—exhibit local
extrema only in the case of inhibitory feedback withF,0,
while A,0 faciliates extrema forF.0 only. In other words
no local extrema occur in excitatory(inhibitory) fields sub-
ject to excitatory(inhibitory) feedback.

The previous sections showed the existence of traveling
fronts, while no information is gained about their temporal
stability towards small deviations. This problem has been
attacked recently by considering Evans functions of nonlocal
neural fields[35,36]. Though this stability analysis of the
proposed model might yield novel interesting results, it
would exceed the major aim of this Brief Report and we
refer the reader to future work.

Summarizing, the present Brief Report introduces nonlin-
ear feedback to neural fields and investigates its influence on
the speed of traveling fronts and its shape for general con-
nectivity kernels. The novel front shape emerges due to non-
local feedback of contrary sign of interaction with the field—
i.e., in the case of excitatory feedback in inhibitory fields and
vice versa.

This work was supported by the DFG research center
“Mathematics for key techonologies”(FZT 86) in Berlin,
Germany.
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